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While meiotic drive is widespread in plants, animals 
and fungi1,2, we know little about its origins, molecu-
lar functions and short- and long-term persistence in 

wild populations3. A particular type of meiotic drive is sex chro-
mosome drive, where transmission of sex chromosomes (XY or 
ZW) deviates from Mendelian segregation. This frequently mani-
fests in the heterogametic sex, yielding a biased progeny sex ratio 
(SR) of affected fathers that preferentially sire females4. SR drive 
systems occur broadly across eukaryotes, but are apparently lack-
ing in some popular model systems. For example, strong SR driv-
ers have not been identified in Drosophila melanogaster (Dmel), but 
its sister species Drosophila simulans (Dsim) harbours three differ-
ent SR drive systems, termed Paris5, Durham6 and Winters7,8. This 
highlights that SR drive and suppression systems can evolve with  
extraordinary dynamics.

Dsim and its immediate sister species D. sechellia (Dsech) and D. 
mauritiana (Dmau) comprise the simulans clade, which diverged 
from a Dmel-like ancestor only ~250,000 years ago9. These closely 
related species are amenable to introgression genetics10,11, yielding 
both SR drive and hybrid sterility factors that preferentially disrupt 
spermatogenesis12. The Durham drive system was uncovered during 
introgressions between Dsim and Dsech, where a minimal ~80 kb 
autosomal region was inferred to harbour a dominant SR suppres-
sor (Too much yin, Tmy). In turn, Tmy was hypothesized to silence 
a still-unknown driver, whose deleterious functions are suppressed 
and thus cryptic in contemporary Dsim6. Subsequently, the Winters 
SR system was defined by a distinct suppressor termed Not much 
yang (Nmy), whose loss depletes male progeny8. The target of Nmy 
hpRNA was identified as Distorter on the X (Dox). Naturally occur-
ring deletion mutations of Dox bypasses the need for wild-type 
Nmy, since dox; nmy double mutants restore equal SR and normal 
spermatogenesis7,13.

Nmy encodes retroposed Dox sequence forming an inverted 
repeat9, and Dox has a paralog on the X chromosome termed 
Mother of Dox (MDox). These Dsim loci are all absent from the 

Dmel genome, suggesting emergence in Dsim or the simulans clade 
ancestor. However, further insights into the evolution of these mei-
otic drive loci were hindered by inadequate genome assemblies. 
PacBio genomes from the simulans clade recently became available14 
and now facilitate such efforts. For example, our small RNA analy-
ses identified another long inverted repeat within the minimal Tmy 
interval defined by introgression genetics. This region was uniquely 
assembled in PacBio but not short-read genomes6,15. Remarkably, 
the Tmy and Nmy hpRNAs are related, suggesting evolutionarily 
relatedness of Winters and Durham systems.

Here, we utilize PacBio assemblies to delineate evolution of 
Dox-related systems. In particular, we (1) trace Dox origins from its 
constituent genes in Dmel, including from protamine, (2) uncover 
rampant proliferation of Dox superfamily loci on X chromosomes 
of simulans clade species, (3) link flanking satellite repeats to expan-
sion of Dox superfamily loci and (4) show co-evolution of Dox 
superfamily meiotic drive loci with complementary hpRNA sup-
pressor loci. These findings testify to ongoing genetic arms races 
in the simulans clade and the involvement of RNAi in silencing  
meiotic drive.

Results
The chimeric Dox locus includes homology to protamine. Yun 
Tao reported that the Dsim meiotic drive locus Dox arose from an 
insertion into a genomic region syntenic with Dmel, and that Dox 
bore homology to Mother of Dox (MDox)7. However, as Dox/MDox 
seemed to contain only short open reading frames (ORFs), their 
coding status and molecular origins were unknown7.

With our interest in Dox function and its suppression by hairpin 
RNA (hpRNA) substrates of the endogenous RNAi pathway15,16, we 
began to reconstruct the evolutionary origins of Dox sequences. As 
defined by RNA-seq from Dsim testis15, Dox encodes a 4.1 kb spliced 
transcript (Fig. 1a). Similarity searches at nucleotide or coding levels 
in Dsim and Dmel revealed complex, chimeric origins of Dox. In the 
following sections, we document homologies to Dmel loci (CG### 
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or common gene names) and/or Dsim loci (GD###). However, to be 
clear, for nearly all these loci, Dmel exhibits the ancestral state and 
lacks sequence insertions present in several Dsim homologs.

The Dox transcription unit is flanked by 359 satellite repeats, 
with another 359 fragment within the transcribed region (Fig. 1a). 
In Drosophila, 359 belongs to the complex 1.688 satellite repeat fam-
ily. In D. melanogaster, a large block of 359 satellites resides in peri-
centromeric heterochromatin on the X chromosome17, but simulans
clade species harbour expanded 359 satellites, including a large 
block within euchromatic X (ref. 18).

The 5′ end of Dox bears similarity to C-terminal-encoding and 
3′ UTR regions of CG8664/GD15682 (designated ‘1’). Embedded 
within this is a fragment of DNAREP1, which belongs to the Helitron
family of transposable elements. Downstream of this are sections 
with homology to Protamine/GD21981. We designate homology to 
Protamine/GD21981 5′ UTR as Dox region ‘2’, and the Dox region 
with coding homology as ‘3’. Protamines are involved in chromatin 
compaction in post-meiotic spermatids19.

A small portion (63 bp) of the putative Dox ORF is homologous 
to another Dmel gene (CG15306), which is absent from simulans
clade species (Dox segment ‘4’). Following the internal 359 repeat, 

the terminal Dox transcript exhibits homology to Cubilin on the X 
chromosome (termed segment ‘5’). Thus, the extant Dox locus fuses 
regions of four different ancestral protein-coding genes, in addition 
to various repeat sequences.

Several of these Dox fragments have similarity to other genomic 
regions (Extended Data Fig. 1). We located nine matches to seg-
ment 1, six of which are located on the X: Dox, MDox, GD27797-a
and GD27797-b, with two other hits at CG5004/GD17329 and 
CG15306. As GD27797-a/b share similar segmental structures with 
Dox/MDox, we name these paralogs as ‘ParaDox’ genes (hereafter, 
PDox1 and PDox2). The three autosomal matches correspond to 
one or both arms of the Nmy and Tmy hpRNAs on 3R (Fig. 1b). 
Thus, acquisition of CG8664/GD15682 sequence was an early step 
during Dox family evolution.

Segment 2, corresponding to the non-coding portion of the 
autosomal Prot/GD21981 gene, hits many of the same loci as seg-
ment 1 (Fig. 1c). We classify these Protamine hits distinctly, as 
CG8664/GD15682 and CG5004/GD17329 contain only noncod-
ing matches to the Protamine locus (including intronic portions), 
while the four X-linked Dox family loci also match its coding 
region (segment 3). Protamine homology can also be detected at 
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Fig. 1 | Structure of Dox transcript with segments acquired from various genes on the path to its origin. a, Testis RNA-seq data show a multi-exonic 

transcript from the Dox region, with several distinct segments acquired from protein-coding genes and repetitive elements. ‘359’ corresponds to sequence 

with similarity to the 359 (also known as 1.688 family) satellite repeat. Segment 1 (blue) corresponds to sequence acquired from GD15682 (CG8664); 

embedded within this segment is 82�bp derived from DNAREP1 transposable element (turquoise). Segments 2 (green) and 3 (orange) correspond 

to sequences acquired from GD21981 (Protamine). Segment 3 is from the protein-coding portion of Protamine, which harbours a high mobility group 

(HMG)-box domain. Inset (a') highlights amino acid identity/similarities between Dox family genes and both the Protamine HMG-box domain, and more 

distant HMG-box sequences from human (pfam definition) and Sox4 (pfam00505) as an outgroup. Segment 4 (yellow) was acquired from CG15306, and 

segment 5 (pink) derives from Cubilin. The key depicts Dox segment features, including their segment number, nucleotide length and origin. b, Overlap 

of various genomic regions to GD15682 (CG8664) from BLAST search. Segment 1 (blue) corresponds to 887�bp from C-terminus and 3′ UTR of GD15682

(CG8664). BLAST hits of various lengths to different genomic features on chr X and chr 3R are shown as light-blue bars with lengths of nucleotide 

homology indicated. 82�bp of segment 1, which corresponds to DNAREP1 transposable element, retrieves 126 BLAST hits in the Dsim PacBio genome. 

c, Genomic matches to the ancestral protamine (GD21981) gene, include regions with similarity to its upstream 5′ UTR and intronic regions (green), and 

others bearing the HMG-box domain (orange). d, Segment 4 from Dox was acquired from CG15306. CG15306 is no longer extant in Dsim, but relics from 

the insertion can be identified from BLAST search at Dox superfamily genes and their hpRNA suppressors. e, Segment 5 from Dox was acquired from C 

terminus of Cubilin (pink). This segment is found only at Dox and MDox. Note that Cubilin matches to the antisense strands of Dox and MDox.
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Nmy/Tmy hpRNAs. Notably, the four Dox family loci retain clear 
coding potential that includes the protamine-like high mobility 
group (HMG)-box domain that binds DNA20. While not recognized 
earlier7, Conserved Domain Database (CDD v.3.19) retrieved sig-
nificant hits (e < 0.001) that include signature residues of the gen-
eral HMG-box domain (Fig. 1a, inset). Dox factors even exhibit  
homology to human HMG-box domains (Fig. 1a, inset), emphasiz-
ing their likely function as chromatin factors.

The C-terminal 63 bp of the predicted Dox ORF, termed seg-
ment 4, corresponds to sequence from CG15306. No orthologous 
sequence can be found, but homology of CG15306 to extant Dox 
family loci suggests that insertion of an ancestral Dox family gene 
at this location disrupted this gene in the simulans clade ancestor. 
The Dmel CG15306 fragment hits PDox1, PDox2, MDox and Dox 
on the X, and Nmy and Tmy hpRNAs on 3R (Fig. 1d). Finally, seg-
ment 5 bears ~1.1 kb homology to the C-terminal-encoding region 
of Cubilin. Cubilin matches to both MDox and Dox, but not other 
Dox family genes, indicating that this was the most recent fusion 
during MDox/Dox evolution (Fig. 1e).

Beyond the HMG-box domain, we examined possible evidence 
for other translated regions of Dox members. As Cubilin homolo-
gies at MDox/Dox are actually located on their antisense strands, 
any coding potential there would seem to be fortuitous. The 
CG8664-derived segment 1 overlaps the C-terminus of the parental 
gene, but mostly corresponds to the CG8664-3′ UTR. Nevertheless, 
we find a potential ORF (termed ORF13) in this region (Extended 
Data Fig. 2). In addition, copies of a potential ORF encoded by 
protamine-derived segment 2 (ORF5) are aligned in Extended 
Data Fig. 2. Although ORF5 is formally from sequence upstream 
of the protamine transcription unit and 5′ UTR, there are more 
in-frame and frame-preserving indels than frame-shifting changes 
across these loci. While there are no clues as to the significance 
of these other candidate ORFs, they provide additional support 
to the fusion events that generated Dox family genes (Extended  
Data Fig. 3).

In summary, Dox and MDox are members of a larger family of 
newly emerged X-linked genes in Dsim, which were assembled from 
pieces of four protein-coding genes that are extant and syntenic in 
Dmel: CG8664/GD15682, Prot/GD21981, CG15306 and Cubilin, 
in addition to 359 satellite repeats (Fig. 1a). Moreover, the largest 
ORF encoded by Dox family genes are similar to the DNA binding 
domain of Protamine, a key sperm chromatin packaging factor.

Multistep origin of Dox genes from dispersed genomic loci. 
Given the complex and hybrid structure of Dox transcription 
units, we sought a parsimonious path for their assembly. Analyses 
of Dmel and Dsim syntenies suggest the following model: The key 
initial event regards how segment 1 from CG8664/GD15682 might 
have joined with segments 2 and 3 from Prot/GD21981 (Fig. 1a). 
Intriguingly, all extant similarities to Dox sequence on the X contain 
adjoining arrangements of segments 1, 2 and 3 (that is, 1-2-HMG). 
Prot/GD21981 are on the 2L arm, while CG8664/GD15682 are on 
the X chromosome, and the fusion event likely happened in the sim-
ulans clade ancestor. Our observations support a model where, dur-
ing the divergence of simulans clade from the Dmel ancestor, a fusion 
of these genes from different chromosomes led to the emergence of 
a chimera. With evidence that protamine gene copies are already in 
flux21 (Fig. 2a), a likely protamine copy mobilized within a simulans 
clade ancestor and inserted within the 3′ UTR of CG8664, located 
on the X chromosome (Fig. 2b). However, while the contemporary 
Dsim copy of CG8664/GD15682 contains segments 1 and 2 in its 
3′ UTR, it lacks the HMG box-bearing segment 3 (Fig. 2c). Thus, 
we infer that the present-day Dsim genome no longer contains the 
full copy of the original insertion that generated ancestral Dox with 
its motley gang of motifs. We refer to this inferred gene model in 
the simulans clade ancestor as the ‘original-Dox’ (‘ODox’; Fig. 2b, 

dotted box). The sublineage of ODox-related copies that lack the 
HMG-box includes at least one other Dsim-specific locus, GD17329 
(the ortholog of CG5004) (Fig. 2c,d).

Further evidence of the lability of the inferred ODox locus is the 
fact that additional copies appear to have mobilized to other genomic 
locations and splintered further into derivatives that are recogniz-
able by the juxtaposition of segments 1-2-HMG. Their relationships 
are again clouded by the fact that certain evolutionary intermediates 
are lacking in present-day genomes. For example, we infer that seg-
ment 4 was acquired by insertion of ODox into CG15306. However, 
the current Dsim locus does not encode an HMG-box locus  
(Fig. 2e). Nevertheless, we can assign this as an evolutionary link in 
the Dox superfamily lineage, because the syntenic regions of Dsech 
and Dmau actually contain genes bearing domains 1-2-HMG-4  
(Fig. 2f). Moreover, we can now observe that a de novo insertion of 
the gene GD27797a bearing segments 1-2-HMG-4 now exists with 
the intron of Dsim GD24701 (Fig. 2g). We note that the ancestral 
allele, represented by its ortholog Dmel CG43730, contains a 359 
satellite repeat at the equivalent intronic location. As mentioned, 
we named this gene ‘ParaDox’, and it has duplicated and exists as 
two nearly identical copies in D. simulans (Fig. 2h). This appears 
to be the first association of a Dox superfamily gene with satellite 
sequences.

ParaDox appears to be the parent of MDox (Fig. 2i), which in 
turn is the parent of Dox (Fig. 2j). We deduce this order based on the 
fact that all these loci share the full complement of 359-1-2-HMG-
4-359 segments, but only MDox and Dox share segment 5, which is 
related to Cubilin. In fact, MDox is inserted at Dsim GD16058, the 
ortholog of Cubilin, establishing it as the ‘mother’ of Dox7 (Extended 
Data Fig. 4). Subsequently, it mobilized between Ptpmeg2/GD16051 
and CG42797/GD16956 to create Dox, which carries a Cubilin  
segment derived from MDox and gained a downstream 359  
satellite (Fig. 2i,j).

Overall, we establish complex mobilization and insertional gym-
nastics for Dsim Dox loci (Fig. 2k), a foundation to interpret broader 
evolutionary dynamics of Dox superfamily genes.

Massive expansion of Dox loci across simulans clade species. We 
next analysed copy number and synteny of Dox superfamily loci 
from the simulans clade sister species D. mauritiana (Dmau) and 
D. sechellia (Dsech), taking advantage of recent highly contiguous 
assemblies of all three simulans clade genomes14.

Dsim MDox is flanked by CG15317/GD16960 and Cubilin/
GD16058, an arrangement preserved in Dmau but not Dsech  
(Fig. 3a). By contrast, while Dsim Dox is flanked by CG42797/GD16956 
and Ptpmeg2/GD16051, the equivalent genomic regions of Dmau 
and Dsech resemble Dmel and lack an intervening Dox gene. Thus, 
Dsim Dox may represent a derived insertion (Fig. 3a and Extended 
Data Fig. 5). We also observe both conservation and flux for PDox 
genes. Dsim PDox1 is in the intron of CG43740/GD24701, with sim-
ilar locations of PDox1 in Dmau and Dsech (Fig. 3a). In contrast, 
Dsim PDox2 is flanked by Hk/GD24648 and CG12643/GD24647, 
but comparable regions of Dmau and Dsech share the ancestral state 
with Dmel (Fig. 3a). Dsim PDox copies have notably higher homol-
ogy to Tmy, while Dox and MDox have higher homology to Nmy 
(Extended Data Fig. 6), suggesting preferential targeting.

Intriguingly, we identify massive amplification of Dox superfam-
ily genes in Dmau and Dsech (Fig. 3a). We segregated these into 
families based on sequence similarity (Fig. 3b) and relationships 
to hpRNAs. In Dmau, there are five members of the Dox family, 
of which only MDox is syntenic. These copies have higher homol-
ogy to hpRNA Nmy. In addition, there are six other copies, which 
have higher homology to an apparent Tmy-like locus (see also later 
analysis of hpRNA evolution in the simulans clade). Their distinc-
tive sequences suggest that they form a distinct subfamily, which 
we term the UnorthoDox (UDox) genes. Although UDox and 
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PDox families share higher homology to Tmy than Nmy, distinct 
sequences cluster these duplications separately (Fig. 3c). Dsech har-
bours four and seven duplicates of the PDox and UDox families, 
respectively. Using newly generated testis RNA-seq data, we detect 
expression of these novel Dmau and Dsech Dox paralogs 
(Extended Data Fig. 7).

Surprisingly, out of nine instances of syntenic Dox superfam-
ily genes in at least two simulans clade species (Fig. 3a), only three 
cases appear to be clear orthologs (Fig. 3b). For the six other syn-
tenic locations, the copies appear to be members of different Dox
subfamilies (Fig. 3b and Supplementary Table 2). This non-intuitive 
situation suggests that gene conversions or independent insertions 
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have occurred at these syntenic loci (Supplementary Table 1). This 
view is supported by inspection of sequence alignments, which 
emphasize that many loci are more similar to dispersed copies 
within the same species (Extended Data Fig. 8) as opposed to 
syntenic copies from another species (Extended Data Fig. 9). For 
example, while syntenic copies of MDox from Dsim and Dmau
cluster together, many other syntenic copies show species-level 
clustering (Fig. 3c).

In addition to expansion of Dox family members, we observed 
expansions of other gene families in the same general region. From 
our testis RNA-seq data, we observe expression of the tyrosine phos-
phatase Ptpmeg2 in all three simulans clade species, and this gene is 
syntenic in Dmel. In Dsim, Dox is inserted adjacent to Ptpmeg2 (Fig. 
3a and Extended Data Fig. 5). In addition to this syntenic copy, there 
are three full-length duplicates of Ptpmeg2 in Dsim, and two and 
three additional full-length copies in Dmau and Dsech, respectively; 
additional partial copies in different species exist (Fig. 3a). Another 
gene with associated expansions is Mkg-r, a recently emerged gene 
on the X chromosome in the simulans clade22, and a duplicate of 
the autosomal Mkg-p gene. Finally, we also note loci with partial 
matches to Cubilin, or to an intronic region of CARPB (Fig. 3a).

Overall, the rapid proliferation and divergence of recently 
emerged copies of the Dox superfamily are atypical for conserved 
genes. Instead, they conform more closely to expectations for adap-
tively evolving genes engaged in conflict scenarios1,2. Thus, we spec-
ulate that many members of the simulans clade Dox superfamily may 
be meiotic drivers, which raises the question of whether other ampli-
fying genes in this region may potentially have selfish activities.

Dox loci disseminate via insertions into satellite repeats. We 
were curious as to how the Dox superfamily is capable of such rapid 

expansion, going from none in Dmel to large and highly variable 
copy numbers in each of the three simulans clade species. Many Dox
superfamily members, and even other amplifying non-Dox loci, are 
flanked by 359 satellites (Fig. 3). In fact, diverse satellite repeats have 
highly dynamic numbers in both heterochromatin and euchroma-
tin of simulans clade species, and recently expanded on the X chro-
mosome in the simulans clade14,18,23,24.

Amongst the diverse and rapidly evolving sets of Drosophila sat-
ellite elements, the most abundant and oldest-known class are the 
359 element/1.688 satDNA25,26. Strikingly, nearly all (n = 28) of the 
amplified copies of Dox superfamily members in the simulans clade 
are flanked on one or both sides by 359 repeats (Extended Data 
Fig. 9). Further inspection reveals distinct modes in the transposi-
tion of Dox superfamily genes. Many cases, as exemplified by the 
inferred movement of Dsim MDox to Dox (Fig. 2h,i), involve local-
ized insertion into a pre-existing 359 satellite, resulting in flanking 
359 sequences on both sides of Dox (Fig. 2i). We identified examples 
of such movements that are specific to Dmau or to Dsech, or that are 
shared by these species. MDox is syntenic and only shared between 
Dmau and Dsim, but at the insertion location, a block of 359 satel-
lite repeat is found in both Dsech and Dmel, indicating insertion 
sites previously harbouring 359 satellite (Fig. 4a). Similarly, UDox1
is shared between Dmau and Dsech and flanked by 359, but in spe-
cies where UDox1 is absent, a 359 block is seen at the syntenic loca-
tion (Fig. 4a). Details of flanking 359 satellite sequences, and their 
sequence feature at syntenic locations in simulans clade and Dmel, 
are provided in Supplementary Table 3.

We also find potentially independent insertions into pre-existing 
359 satellite blocks. For example, UDox4 is found only in Dmau, 
while UDox9 appears to be an independent insertion in Dsech; 
all these independent insertion sites also harbour pre-existing 359 
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Fig. 3 | Evolution and diversification of the Dox superfamily in simulans clade species. a, Chromosomal view of expansion of Dox superfamily and non-Dox
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satellites (Fig. 4b). Finally, we note seemingly more complex trajec-
tories in which there may have been independent or consecutive 
insertions into a given genomic locus, given that the three simu-
lans clade species can contain all different gene contents between 
genes syntenic with Dmel (Fig. 4c). It is challenging to determine 

these evolutionary scenarios unambiguously with current data, but 
recurrent associations with 359 satellites strongly imply they are 
causal players in Dox family dynamics. Potentially, they might 
facilitate gene conversion27, or perhaps insertions via excised 
circular DNA28.
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Dmel. b, Within simulans clade, examples of independent insertions of Dox superfamily members were found, indicating their active spread within species. 
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Recurrent emergence of hpRNA suppressors of Dox family loci. 
With a fuller view of dynamic proliferation of Dox genes, we turned 
to evolutionary strategies for their suppression. In Dsim, Nmy was 
proposed to originate via retroposition of Dox on chr3R7,8, consis-
tent with our general model that hpRNAs emerge from their pro-
spective targets16. Dsim Nmy is flanked by GD26005/CG14369 and 
GD20491/CG31337 (Fig. 5a). Synteny analysis shows that Nmy is 
also flanked by these genes in Dmau, but no such hpRNA exists at 
the corresponding location in Dsech (Fig. 5b). The absence of Dsech 
Nmy corresponds to our observation of absence of Dox/MDox 
homologs in Dsech. However, the highly abundant PDox copies in 
Dsech (Fig. 3a) implies another suppressor of these loci.

We next examined Tmy, located ~2 Mb upstream of Nmy on 
chr3R in Dsim. Dsim Tmy is flanked by GD19044/CG5614 and 
GD20331/CG5623. However, no hpRNA exists in the syntenic 
region of Dmau and Dsech (Fig. 5c). This is consistent with the orig-
inal introgression genetics whereby replacement of the Dsim Tmy 
region with Dmau material unleashes meiotic drive phenotypes6. 
Nevertheless, these genetic experiments alone do not actually mean 
that other species lack Tmy. One can only conclude that the syn-
tenic region does not harbour a Tmy equivalent. Indeed, we iden-
tified a hpRNA within a different region, syntenic between Dmau  
and Dsech, that is homologous to Tmy and generates abundant  
siRNAs (Fig. 5d).

Is this Dmau/Dsech hpRNA an ortholog, or paralog, of Dsim Tmy? 
We took note of the genes flanking these hpRNAs, and observed 
that Dmau/Dsech contain duplicated sequences from a pair of genes, 
Gr98d and Klp98A. Interestingly, these genes reside adjacent to each 
other in the ancestral location shared with Dmel (Fig. 5d). In Dsim 
as well, these genes are adjacent to each other without any evidence 
for an aberration that could have resulted from ancestral insertion 
of Dox family members. This observation refutes a single UDox/
hpRNA progenitor inserted between Klp98A~Gr98d in a simulans 
clade ancestor. One plausible scenario is that the UDox/hpRNA 
progenitor emerged in either Dmau or Dsech and traversed species 
boundaries via gene flow. The observation that Dmau and Dsech 
hairpins are not in precisely syntenic order but instead reside on the 
left and right sides of a centrally aligned sequence that is common 
to Dsim and Dmel supports this view. Alternatively, it is possible that 
the hpRNA emerged in the ancestor to Dmau and Dsech, and the 
local duplication which generated a gene arrangement with hpRNA 
flanked by Klp98A and Gr98d was resolved via different paths as 
the species diverged into contemporary Dmau and Dsech. We call 
these ‘Tmy2’ hpRNAs. Dsim Tmy resides ~10 Mb away from Tmy2 
in a more central location of 3R flanked by CG4525 and CG5623, 
and our observations support a likely independent origin of Tmy 
hpRNA in Dsim (Fig. 5a).

We noticed that some siRNAs mapped to Dsech Tmy also match 
other autosomal locations. This reminded us of our previous dis-
covery of Tmy itself, which we recognized from siRNAs that origi-
nally mapped not only to the Nmy hpRNA as well as Dox loci on the 
X, but also to an uncharacterized autosomal region that proved to 
be the Tmy hpRNA15. Closer examination revealed a repeated locus 
bearing four tandem copies in Dsech. The syntenic region in Dmel 
contains the adjacent Trp1 and CG13131 genes. These are still rec-
ognizable in Dsech, but the CG13131 copies now contain a ~130 bp 
inverted repeat within its 3′ UTR, which generates siRNAs. The 
CG13131~hpRNA~Trp1 multigene unit was subsequently dupli-
cated locally, yielding the present-day disposition in Dsech (Fig. 5e). 
As these hpRNA inverted repeats are much smaller than Tmy, we 
refer to this as the mini-Tmy Complex (mTmy-C).

Alignments of Nmy/Tmy/mTmy-C loci with Dox superfamily 
genes in each species reveal preferred patterns of target comple-
mentarity with individual subfamilies (Extended Data Fig. 8). For 
example, the newly identified mTmy-C loci match well to a diversi-
fying clade of UDox genes in Dsech, and are well positioned to serve 

as their functional suppressors. Phylogenetic analysis of hpRNAs 
and Dox superfamily targets support distinct clustering of preferred 
hpRNA targets (Extended Data Fig. 10). Some branches have weak 
node support, and certain evolutionary relationships are clouded by 
the fact that many syntenic loci may be the products of gene conver-
sion or independent insertions. Nevertheless, we find high or indeed 
perfect antisense complementarity between mature siRNAs from 
various hpRNAs and individual members of the Dox/PDox/UDox 
subfamilies (Fig. 5g), consistent with the notion that individual 
hpRNAs preferentially target different Dox subfamilies.

Rapid evolution of protamine genes within D. melanogaster. Our 
analyses may lead to the impression of unilateral runaway evolu-
tionary dynamics of protamine homologs in simulans clade species 
versus Dmel. However, as canonical Protamine genes duplicated in 
Dmel compared with the simulans clade (Fig. 2a), and exhibit signa-
tures of positive selection21, Protamine loci are subject to recurrent 
rapid evolution.

We examined the possibility of additional alterations in Protamine 
genes in Dmel. Interestingly, queries to Dmel Y (https://flybase.org) 
and the improved Dmel PacBio Y chromosome contigs29 revealed 
multiple copies and pseudogenes of Protamine within a genomic 
cluster (Fig. 6a). This region is adjacent to the 18-member Mst77F 
cluster located on chr Y30, and was in fact noted as a genomic region 
(h17 cytoband) containing multiple copies and fragments of several 
gene families. At the time, these were noted as copies of CG46192, 
ade5 (Paics, purine biogenesis), CG12717 (small ubiquitin-like 
modifier protease) and Crg-1 (forkhead transcription factor)30. 
However, subsequent work clarified that CG46192 family and 
Mst77 family proteins contain the MST-HMG-box domain found 
in testis-restricted proteins20. Of note, both Mst77F and protamines 
replace histones during compaction of sperm chromatin31. We find 
that CG46192, along with its cluster copies and pseudogenes, are 
more similar to protamine than Mst77F/Mst77Y proteins (Fig. 6b),  
indicating that they represent a distinct amplification event. 
Moreover, there is a complex history to emergence of this cluster, 
since Paics and CG12717 are adjacent on X chromosome loci, while 
Protamine (Mst35Ba/b) genes are located on chr2L (https://flybase.
org/). The assembled Dsim Y does not appear to contain copies of 
MST-HMG-box genes.

To assess relationships of the h17 cluster with small RNAs, 
we examined wild-type testis data with that of the piRNA factor 
aubergine (aub)32. Interestingly, abundant small RNAs map to the 
h17 chrY cluster (Fig. 6b), but not to the adjacent Mst77Y cluster  
(Fig. 6a). However, these are dominantly in the piRNA-sized range 
(Fig. 6c). Evidence that these are in fact piRNAs comes from the fact 
that their accumulation is strongly decreased in aubergine mutant 
testis (Fig. 6c). The observation of abundant testis piRNAs from 
the h17 cluster was independently reported while this work was in 
revision33. Interestingly, the small amount of remaining h17 cluster 
small RNAs in these mutants are preferentially 21 nt long (Fig. 6c), 
suggesting a possible interplay of piRNA and siRNA biogenesis at 
this cluster, as seen for other piRNA clusters in D. melanogaster34,35.

Discussion
Rapid evolutionary dynamics of Dox family meiotic drive genes. 
In this study, we reconstruct the ancestry and diversification of 
an expanded family of Dox genes and their presumed hpRNA/
siRNA suppressor loci. These genes exhibit partly overlapping con-
tent amongst the three simulans clade species, but exhibit numer-
ous unique genomic copies and innovations within each species. 
Notably, all of these Dox family loci are absent from their closest 
sister species D. melanogaster and other species in the Dmel group. 
This implies the birth of a meiotic conflict in the simulans clade 
ancestor, and subsequent cycles of proliferation of Dox family driv-
ers and their subsequent suppression by hpRNA loci.
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Until now, the presence of any distinctive nucleotide content 
of Dox was unknown, other than its homology to MDox and the 
hpRNA loci Nmy and Tmy7,8,15. However, the recognition of mul-
tiple potential ORFs that are shared with other genomic sources, 

and their syntenies amongst simulans clade species and D. melano-
gaster, allowed us to trace stepwise origins of an ancestral Dox gene 
from multiple genomic regions that remain identifiable in D. mela-
nogaster. The rapid diversification of Dox family genes, which assort 
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into at least three recognizable subfamilies (and potentially more, 
depending on the granularity of subdivision), suggests that many 
members of this family may participate in meiotic drive.

While this work was in revision, Presgraves and colleagues 
independently reported their study of evolutionary dynamics of 
Dox superfamily loci and related hpRNAs36. By and large, our 
studies appear largely concordant, although they implement a sin-
gle nomenclature for all novel Dox superfamily copies as Dxl-1 to 
Dxl-15, in order of their chromosomal positions, along with the 
designation of Ur-dox as the simulans clade locus at the syntenic 
position of Dmel CG15604 (ref. 36). We emphasize the logic and 
utility of Dox subfamily nomenclature in our study, since (1) the 
subfamilies exhibit characteristic sequence features suggesting 
potentially distinct activities, and (2) many syntenic copies actu-
ally exhibit clearly different sequences that assign them to differ-
ent subfamilies (Fig. 3). As this complex topic ultimately requires 
future study and integration of the two studies, we sought to 

provide a side-by-side comparison of the Dxl-## nomenclature 
and the Dox/PDox/UDox nomenclature, alongside our naming 
rationale (Supplementary Table 2).

Amongst the multiple fragments of ancestral genes detected at 
Dox loci, their homology to the HMG-box domain of Protamine
provides a direct framework to interpret their impact on sper-
matogenesis. Sperm chromatin becomes highly condensed during 
maturation, coinciding with replacement of histones with prot-
amines, in flies37 and mammals38. Since sex chromosome conflict 
is most apparent in the male germline, the homology of Dox
family proteins to Protamine provides a testable foundation for 
understanding their role in meiotic drive systems that distort fidel-
ity and quality of spermatogenesis, namely Winters and Durham 
drive6,8. Indeed, the intimate connection of protamines and sex 
chromosome conflict is bolstered by the independent expan-
sion of euchromatic and Y chromosome protamine copies in 
D. melanogaster.
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Repeat-mediated evolution of SR systems. It was recently docu-
mented that, despite an overall low amount of gene flow between 
D. mauritiana and D. simulans, including on the X, the Dox/MDox 
interval recently transferred between these species39. This represents 
one mechanism for the spread of meiotic drive elements between 
related species. However, we are struck by the highly dynamic pro-
liferation and diversity of Dox family loci amongst the three quite 
closely related simulans clade species, which indicates that gene flow 
cannot account for their evolution. Our observation of near-universal 
existence of 359 satellite sequences flanking most Dox superfamily 
genes strongly suggests that these are involved in their evolutionary 
strategy of dispersal. This notion is further bolstered by the existence 
of satellite-flanked multigene units bearing a Dox family gene, and 
even their existence surrounding hpRNA genes.

The 359 satellite (also known as 1.688 satDNA) is the evo-
lutionarily oldest and also most abundant Drosophila satellite 
sequence25,26. Precise analyses of the genomic make-up of repeat 
sequences, including satellites, are generally difficult due to their 
mis-assembly in short-read sequenced genomes. Yet it was rec-
ognized some time ago that 359 satellites have recently expanded 
on the X chromosomes of simulans clade species18. The advent of 
single-molecule long-read sequencing has enabled much greater 
precision in documenting the high rate of evolutionary dynamics of 
359 and other satellite sequences across simulans clade species14,23,24. 
Thus, Dox superfamily loci may potentially hijack the intrinsically 
elevated evolutionary dynamics of satellite sequence to fuel their 
spread and amplification, potentially involving exchanges to and 
from the extrachromosomal pool.

Methods
Genome and transcriptome data. PacBio genome data for simulans clade species14 
was obtained from SRA through the Bioproject ID PRJNA383250. Individual 
genome assemblies for D. simulans, D. mauritiana and D. sechellia are available 
through genome assembly IDs ASM438218v1, ASM438214v1 and ASM438219v1, 
respectively. We used our previously reported transcriptome datasets from Dsim 
testis15, and prepared new RNA-seq data and small RNA data from Dmau and 
Dsech testis, as described below.

sRNA library preparation and sequencing. For small RNA analysis, we extracted 
RNA from testes and accessory glands of 7-day-old Dsim w[XD1], Dmau w[1] 
14021-0241.60 and Dsech 14021-0248.25 strains using Trizol (Invitrogen). Total 
RNA (1 μg) was used to prepare small RNA libraries as described40, with the addition 
of QIAseq miRNA Library QC Spike-ins for normalization (Qiagen). Adenylation of 
3′ linker was performed in a 40 μL reaction at 65 °C for 1 h containing 200 pmol 3′ 
linker, 1× 5′ DNA adenylation reaction buffer, 100 nM ATP and 200 pmol Mth RNA 
ligase, and the reaction is terminated by being heated to 85 °C for 5 min. Adenylated 
3′ linker was then precipitated using ethanol and was used for 3′ ligation reaction 
containing 10% PEG8000, 1× RNA ligase buffer, 20 μM adenylated 3′ linker and 100 
U T4 RNA Ligase 2 truncated K227Q. The 3′ ligation reaction was performed at 
4 °C overnight, and the products were purified using 15% urea-polyacrylamide gel 
electrophoresis gel. The small RNA-3′ linker hybrid was then subjected to 5′ ligation 
reaction at 37 °C for 4 h containing 20% PEG8000, 1× RNA ligase buffer, 1 mM 
ATP, 10 μM RNA oligo, 20 U RNaseOUT and 5 U T4 RNA ligase 1. cDNA synthesis 
reaction was then proceeded immediately by adding the following components 
to the ligated product: 2 μl 5× RT buffer, 0.75 μl 100 mM dithiothreitol, 1 μl 1 μM 
Illumina RT primer and 0.5 μl 10 mM dNTPs. The RT mix was incubated at 65 °C 
for 5 min and cooled to room temperature and transfer onto ice. Superscript III 
RT enzyme (0.5 μL) and 0.5 μL RNase OUT were added to the RT mix, and the 
reaction was carried out at 50 °C for 1 h. cDNA libraries were amplified using 15 
cycles of PCR with forward and illumina index reverse primers, and the amplified 
libraries were purified by 8% non-denaturing acrylamide gel. Purified libraries were 
sequenced on HiSeq2500 using SR50 at the New York Genome Center.

RNA-seq library preparation and sequencing. We used Dsim w[XD1] and 
Dmau w[1] 14021-0241.60, which were used for PacBio genome sequencing14, 
and Dsech 14021-0248.25 used for the Sanger assembly41. We isolated total RNA 
from ~5-day-old flies and for Dsim, Dmau and Dsech samples. We extracted RNA 
from testes (dissected free of accessory glands) using Trizol (Invitrogen). We 
made two independent dissections to generate biologically replicate RNA samples, 
whose quality was assessed by Bioanalyzer. We used the Illumina TruSeq Total 
RNA library Prep Kit LT to make RNA-seq libraries from 650 ng of total RNA. 
Manufacturer’s protocol was followed except for using 8 cycles of PCR to amplify 
the final library instead of the recommended 15 cycles, to minimize artefacts 

caused by PCR amplification. All samples were pooled together, using the barcoded 
adapters provided by the manufacturer, over two flow cells of a HiSeq2500 and 
sequenced using PE75 at the New York Genome Center.

Data analysis. RNA-seq data: Paired-end RNA-seq reads were mapped to PacBio 
genome assemblies for Dsim, Dmau and Dsech using hisat2 aligner with the 
command ‘hisat2 -x indexed_genome_assembly -1 $ read1.fastq.gz -2 read2.
fastq.gz -S file.sam’. The alignment file in SAM format was then converted to a 
compressed BAM file using SAMTOOLS42 with the following commands: (1) 
‘samtools view -bS file.sam > file.bam’, (2) ‘samtools sort file.bam > file_sorted.
bam’ and (3) ‘samtools index file_sorted.bam’. Mapping statistics for the BAM 
alignment, and visualization BigWig files were obtained using the bam_stat.py and 
bam2wig.py scripts, respectively, from the RSeqQC package43.

Small RNA data: sRNA reads were processed as follows: Raw sequence reads 
were adapter trimmed using Cutadapt software (https://cutadapt.readthedocs.
io/en/stable/). After clipping the adapter sequence, we removed the 4 bp 
random-linker sequence inserted at 5′ and 3′ of the sRNA sequence (total 8 bp). 
After filtering ≤15 nt reads, we mapped the small RNA data to PacBio genome 
assemblies using Bowtie (with options ‘-v0 -best -strata’.) The resulting small RNA 
alignments in SAM format were converted to BED for downstream processing 
using the BEDops software and visualized on Integrative Genomics Viewer.

Homology and domain searches. Sequence homology search for putative ORFs 
encoded in the Dox transcript and search for Dox-like sequences in the PacBio 
assemblies were performed using command-line version of blastn and/or tblastn 
implemented in BLAST 2.2.31+ (ref. 44). Search for conserved protein domains 
in the Dox family genes was performed using both HMMER v.3.3.2 and National 
Center for Biotechnology Information Conserved Domain Database (CDD v.3.19).

Phylogenetic analysis. For phylogenetic analysis of Dox superfamily genes, 
we constructed an alignment of coding sequence for each ortholog using the 
translation align feature in Geneious version 11.0.4. For this alignment, we 
excluded two UDox copies (UDox1 and UDox5) in Dmau, which appear to carry 
premature stop codons. The alignment was performed using the Geneious multiple 
alignment sequence feature using the global alignment with free end gaps. For the 
alignment, a 65% similarity (5.0/−4.0) cost matrix was used with the following gap 
penalty parameters: (1) gap open penalty of 12, (2) gap extension penalty of 3 and 
(3) two refinement iterations. The resulted alignment was then manually curated 
to ensure proper alignment. Phylogenetic analysis on the nucleotide alignment 
was performed using the MrBAYES45 plugin in Geneious software v.11.0.4. For 
this analysis, we used the HKY85 substitution model with Dmel ProtA/B as an 
outgroup. A gamma rate variation option was used with four gamma categories. 
For Monte Carlo Markov chain settings, we used the following parameters:  
(1) chain length ranging from 100,000 to 150,000 based on the trace file, (2) four 
heated chains, (3) heated chain temp of 0.2, (5) subsampling frequency of 100,  
(6) burn-in length of 1,000 and (7) a random seed of 7,826. For priors, we used the 
‘unconstrained branch lengths’ option with GammaDir parameters of (1, 0.1, 1) 
and shape parameter of exponential (10).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Paired-end RNA-seq reads from Dmau, Dsim and Dsech testis, and small RNA data 
from Dmau and Dsech are available from the GEO database: GSE185361.

Code availability
Codes for analyses in this manuscript are available at https://github.com/
Lai-Lab-Sloan-Kettering/Dox_evolution.
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